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Skin friction on a strip of finite width moving parallel 
to its length 
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SUMMARY 
A flat strip, of infinitesimal thickness and infinite length, 

is located in a viscous incompressible fluid, and both the strip 
and fluid are at rest initially. The strip is abruptly set into 
steady motion parallel to its length. An unsteady uni-directional 
flow of the fluid results, and there is a variable skin friction on 
the strip which must be overcome to maintain its velocity. In 
the early stages of motion, the skin friction is large, with a local 
behaviour which resembles that for a flat strip of infinite width. 
The skin friction near each edge of the strip can be more accurately 
represented by referring to the semi-infinite configuration that is 
realized on displacement of the other edge to infinity. At this 
stage, the results depend on separate consideration of the two 
limiting configurations, and the way to further improvements is 
not clearly delineated. The object of this paper is to provide a 
formulation which contains the preceding information and allows 
a systematic evaluation of all additional refinements. Thus, it is 
shown that the total skin friction on a strip of width 2a, moving 
with velocity V in a fluid whose coefficients of viscosity and 
kinematic viscosity are p, v, takes the form 

Here the first two terms stem from the infinite and semi-infinite 
strip distributions, and the integral, containing a complementary 
error function, furnishes all corrections of the lowest exponential 
order, in the initial stages of motion, when a /d (v t )  % 1. The 
calculation is based on a new integral equation which makes 
explicit the effect of an isolated edge, and by iteration provides 
the interaction effects between edges at a finite separation. 

1. INTRODUCTION 
A simple class of viscous incompressible fluid motions is that produced 

by the forced motion of a solid parallel to its infinite length. If the solid 
is instantaneously set in motion with constant velocity, and has a uniform 
aspect along its length, the resulting fluid motion is uni-directional, 
although unsteady in time. The fluid velocity is parallel to and uniform 
in the direction of motion of the solid, and hence described by a linear 
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partial differential equation with the time and transverse coordinates as 
independent variables*. Rayleigh (191 1) analysed the simplest con- 
figuration, a flat strip of infinite width, for which the skin friction is 
uniform and has the magnitude pV/2/(7rvt) per unit area (of each face). 
The strip of semi-infinite width and the more general wedge shape have 
been studied by Howarth (1950), Sowerby (195 l), and Hasimoto (195 1 a, b), 
and from these calculations the edge effect can be isolated. A characteristic 
dimension is introduced by the strip of finite width, say 2a, and the state 
of affairs depends on whether a / z / ( v t )  is large or small compared with 
unity. In the former case, the fluid motion is confined to a boundary 
layer with small thickness relative to the strip width, and the total skin 
friction is given approximately by supplementing the Rayleigh contribution 
with those of the isolated edges, whence 

This result, obtained by Howarth (1950) and Hasimoto (1951 a, b) (Davies 
(1950) also considers the flat strip, presenting a formal series solution 
which does not lend itself to analytic approximation for small t ) ,  omits any 
interaction between the strip edges, and it is such effects that we propose 
to calculate. It turns out that their magnitude is rather small, in the domain 
where the skin friction may be analysed by the preceding scheme, for the 
corrections to (1) are of exponential order; thus 

The developments of the skin friction for the strip and the (smooth) circular 
cylinder show a quite different form after the first two terms, since the 
latter is, according to Batchelor (1952), 

where a denotes the cylinder radius. For the later times, 2/ (v t ) /a  $ 1, 
Hasimoto (1954) and Batchelor have obtained other developments of the 
skin friction in the two cases ; there is a smooth transition to the approximate 
expression (1) at a/z / (v t )  = 1. Hasimoto (1954, 1955) has recently 
generalized (3) so as to apply to a smooth general cylinder, but the 
corresponding accuracy is not yet attained for a polygonal cross-section. 

The calculation to be described makes use of a double transform 
operation, one being a Laplace transform with respect to the time and 
the other a complex Fourier transform with respect to the (transverse) 
coordinate in the plane of the strip. After applying the Laplace transform 
to the differential equation for the fluid velocity, the resulting boundary 

* An equivalent heat conduction problem relates to the variable temperature 
distribution in a uniform medium which is initially at zero temperature, and in 
which an internal boundary is maintained at a constant temperature. Here the 
heat flux at the boundary is analogous to the skin friction in the fluid motion problem. 
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value problem is formulated ($ 2) in terms of Green’s functions and integral 
equations. The subsequent analysis is effectively carried out with complex 
Fourier transform and elementary function theoretic arguments, yielding 
finally a new integral equation ($3)  which is well adapted to the determination 
of the skin friction (5  4) in the initial phases of the motion. It is noteworthy 
that the inverse Laplace transform back to the time coordinate can be 
performed without approximation at any stage of iteration for the integral 
equation. 

Similar Fourier transform techniques can be employed to analyse the 
scattering of sound or light waves incident on a strip, and the results invite 
comparison with those in the problem at hand. In  the time-harmonic 
two-dimensional situation, with primary plane waves, the scattering cross- 
section at normal incidence relates to an integrated strip distribution and 
is thus analogous to the total skin friction. For comparison purposes, 
consider the skin friction (3) and the leading terms in the cross-section a 
at wavelengths h short compared with the strip width 2a, 

when the total wave function vanishes at the strip. The counterpart of 
the Rayleigh term in the skin friction is the geometrical term of the cross- 
section, and whereas the next contribution to the skin friction arises from 
isolated edge effects, these do not contribute to the cross-section. Succeeding 
terms of the developments, which account for interaction between the strip 
edges, are of exponential form in the skin friction and of trigonometric 
form in the cross-section, reflecting the diffusion and propagation character 
of the problems. 

Carrier (1955) has also studied the boundary layer aspect of solutions to 
certain types of integral equation, where reference is made to a semi-infinite 
configuration for the purpose of characterizing the edge behaviour. The 
solution to an inhomogeneous finite-range integral equation (cf. (21)) is 
given, neglecting interaction between the edges, and utilized in analysis 
of an oscillating plate in a viscous fluid. 

2. FORMULATION 

- a  < x  < + a ,  - c o < x < + + ,  

and set into motion at time t = 0 with steady velocity V along the x-direction. 
The viscous fluid begins a parallel motion, with velocity vs(x,y, t )  which 
satisfies the eauation 

Let the strip be located in the (x,x)-plane, 

(v is the kinematic viscosity) and automatically complies with the equation 
of continuity, by virtue of translational invariance. The same differential 
equation applies to the velocity ratio 

$(%Y, t )  = VZIV, (6)  
K 2  
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which is further subject to the initial and boundary conditions 

$ = O  a t t = 0 ,  

and the symmetry condition 

I f  
$(.,y, t )  = $(x, -y, 4. (9) 

denotes a quantity proportional to the Laplace transform of $(x,y, t) ,  then, 
using (5), (6), (7), it follows that 

and 

(12) 

(13) 

3 = 1 a t y  = 0 and 1x1 < a, 

$ - t o  asx2+yZ+m, 
where 

k2 = plv.  
The boundary value problem stated in ( l l ) ,  (12), is advantageously 

reformulated with the help of solutions to the associated inhomogeneous 
differential equation 

(& + 5 -kZ)G(x,y;  x’,y’)  = -6(x-x‘)6(y-y’) (W{k} > 0). (14) 

A fundamental solution of this equation with logarithmic singularity at 
the ‘ source ’ point x = x’, y = y’, and a null value at infinity is the Green’s 
function 

where KO denotes the zero order Hankel function of imaginary argument, 
namely 

I n  terms of the source function Go, a solution of the differential equation (11) 
which vanishes at infinity and is symmetric with respect to the plane of 
the strip can be represented by 

Go(x,y ; 3 ’ 9 ~ ’ )  = (2n)-1&(kd{(x-~’)2 +(Y-.Y’)’)), (15) 

Ko(5) = &d#)(cek’2). (16) 

(17) 

Placing y = 0, and writing 

we have 
iq., 0,P)  = fb), 
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and from the condition (12), which givesf(%) = 1 for 1x1 < a, there follows 
an integral equation for the (vorticity distribution function) 

on the strip. The boundary value problem (ll), (12), is thus linked with 
the solution of a one-dimensional integral equation, 

(211 
l a  

1 = - 1 K,(k(x-x‘ l )g(x‘ )  dx’ (1x1 < a), 
277 --a 

and a knowledge of g(x) determines 3 at all points off the strip by (17). 
Choosing next the Green’s function of the half space y > 0, 

G,(x,y ; x’,y’) = (2.rr)-1cKo(~d{(x- x’I2 + (Y -Y’>”) - 
- Ko(kd{ (x  - x’)2 + (Y +Y‘)”)l, (22) 

which vanishes at y = 0, a representation for # therein is, 
i a  
ray Ix’l<a 

&x,y,p) = - -- J’ Ko(kz/{(x-x’)2+y2)) dx‘- 

- 1 ?. 1 Ko(k2 / { (x  - x ’ ) ~  +y2))f (x’) dx’ (y > 0), (23) 
Ix’l>a 

where the boundary value $(x, 0,p) = f ( x )  = 1 for 1x1 < a is utilized. 
A further differentiation in (23) with respect to y, and passage to the limit 
y = 0, yields 

7/ + O +  + I Ko(k2/{(x - x ‘ ) ~  +y2))f(x‘) dx’ 
I d l > a  

for the KO-function is a solution of the homogeneous equation (1 1) when 
y’ = 0 andy -+ 0. Since $(x,y,p) = $(x, -y,p), it follows that(a$/ay)?l = = 0. 
for 1x1 > a, and the condition g(x) = 0 for 1x1 > a provides an integro- 
differential equation, 

(& - k2) (J’ Ko(klx-x’ l )  dx’+ 
I d 1  <a 

+I K,(kjx-x‘l)f(x’)dx’ = 0 (1x1 > a), (25 )  
Ix’l>a 

for the transform g(x,O,p) = f(x), in the domain 1x1 > a.  The solution 
to the boundary value problem (ll), (12), can be based on this integro- 
differential equation, and the representation (23) for the even function of y, 
#(x,y,p), in the half-plane y > 0. It is evident that the two formulations 
given are of a complementary nature, with the primary role accorded to 

- 
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the distribution g(x )  on the strip in the former, and to the coplanar 
,distributionf(x) off the strip in the latter; clearly, a knowledge of either 
function suffices to determine the other. 

The skin friction D(x) at the strip is 

where L-l denotes an. inverse Laplace transform, namely (recall the 
.additional factor p introduced in (lo)), 

1 c + i m  

L-lfg(x,p)] = 2.rri I g m e ” t d p  ( c  > 0). 
c - i m  P 

I n  the total skin friction or drag, D, the integral of D(x) over the strip width 
is involved, and an additional factor of 2 is necessary to account for both 
faces, whence 

Although the drag is naturally related to g(x) ,  the latter function need not 
be the primary quantity in an integral equation formulation of the boundary 
value problem ; to calculate D in the early stages of motion, it will in fact 
be convenient to work from the integro-differential equation for f(x) and 
obtain g(x)  secondarily. 

3. INTEGRAL EQUATIONS 

The basic integral equations (21) and (25) cannot be solved explicitly 
in  closed form, and, as presently constituted, do not lend themselves to 
approximate solution, say, by iteration. Our objective is to obtain a new 
integral equation from (25) which is appropriate to the conditions prevailing 
at small values of t ,  and which also permits ready approximation to the skin 
friction. The idea underlying this transformation is that, for large values 
of the parameter a / z / ( v t ) ,  the distributions f(x) in the ranges x > a and 
x < - a  are weakly coupled and exactly describable in the limit of no 
coupling, which corresponds to the geometrical configuration of a semi- 
infinite strip. 

A brief exploration of the latter problem is in order, and information 
obtained relative to the behaviour off and g near the edge will carry over 
to the finite strip case. The relation (19) provides a convenient starting 
point, and, if the origin is shifted to one edge, this relation becomes 

a-a 
f ( x )  = & 1 K,(Klx-x’l)g(x‘) dx’ 

0 

= 1 for 0 < x < 2a. 

Whence, letting a + oc, , we obtain 

I 
J 

= 1  f o r x > O  
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as the form appropriate to the semi-infinite strip 0 < x < co. Employing 
the integral representation 

1 O0 exp{iC(x- x’) - d ( k 2  + P ) l Y  --y’l} d{ ,  
Ko(kd{ (x  - x’)2 + (Y -Y’)2}) = 3 1- d ( k 2  + C2) 

(31) 
and introducing 

j ({)  = c i c z f ( x )  dx, 
- m  

g<() = Im ciCzg(x) dx, 
0 

we then obtain the transform version of (30): 

Here E appears by virtue of an exponential attenuation factor introduced 
when calculating the transform off = 1 in the range x > 0. The relation 
(34) has meaning if there is a common domain of regularity in the complex 
{-plane for the functions occurring therein. According to ( 3 0 ) , f ( x )  contains 
the factor ekx  as x +  - 00, and hence f ( { )  is regular in the half-plane 
9{{} > -W{k};  an exponential free behaviour for the strip distribution 
g(x), as x -+ co, implies that g(5) is regular in the half-plane 9{<} < 0. 
Thus, the common domain of regularity is a strip parallel to the real axis 
of the (-plane, defined by 0 > 9{{} > -9?{k} = 9{ - ik} .  Following 
the Wiener-Hopf procedure, (34)  is rewritten in the form 

where the left-hand side is regular in the (upper) half-plane 9{ {) > 9{ - ik}, 
and the right-hand side is regular in the (lower) half-plane 9{{} < 0. An 
integral function is thus defined throughout the 5-plane, and, since each 
side vanishes at infinity in the respective half-planes (assuming only that 
f (x) and g(x) are integrable at the edge x = 0), this function is zero. Hence, 

m = ; [ 1 - J( A ) ] ,  

in the limit E = 0, while 

(36) 

(37) 
Inverting, we find 

and 

2k me-kxu 

= 2 k + ;  J‘, d ( u -  1) du (x > 0) ,  (39)  
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with k real. From (38), it appears that 

which is the value off for x > 0, and 

According to (39), 

and 

Since 

f(x) - ekz/( - kx)lJ2 as x +- - 00. (41) 

g(x )  - ( k ~ ) - l / ~  as x -+ 0 + (42) 

(43) g(x )  - 2k as x + 00 . 

the uniform distribution g ( x )  = 2k evidently refers to a strip of infinite 
width. This synopsis of features of the semi-infinite strip configuration is 
sufficient for the present, and further references are deferred until later. 

Turning attention again to the strip of finite width, and choosing (24), 
as a starting-point for the analysis, we find that the concomitant transform 
relation becomes 

fi([) = e-iszf(x) dx. (49) 
- w  

Evidently g(5) is regular in the finite part of the <-plane, and with the local 
behaviour g(x )  - (k(a T x))-lI2 as x --f & a, which is characteristic of an 
isolated edge (see (42)), it follows that 

The exponential decrease of f ( x )  as x -+ co implies that A([) is regular in  
the (lower) half-plane .f{l;} < 9 ' { i Z } ,  and a finite limit forf(x) as x + a+O 
(see (40)) yields the asymptotic behaviour 

in the half-plane of regularity. By symmetry, f is an even function of x, 
so that fi(5) = Jl( - C), and thus z(<) is regular in the (upper) half-plane 
9{5} > - 9 { k } ,  where 

Accordingly, the transform relation (45) holds in the strip )4{5}1 < 9 { k )  
and, after the substitutions 

g(<) - e+ica/( T i<)1'2 as 151 --f co (${t ; }  2 0). (50) 

fl( 5) N e-ica /5 as 151 + (J%} < 9{Jz}) (51) 

j 2 ( S )  - eita/S as 151 -+ 0 (4{5} > - 9 { k } ) .  (52) 

fi(0 = c icaF1(<> ,  f2(<) = eigaF,(O, (53) 



The left-hand member is regular in the upper half-plane, and the first term 
of the right-hand member is regular in the lower half-plane. For each 
remaining term of the right-hand member, a decomposition may be effected, 
with the help of Cauchy's integral theorem, 

-C- 
.r. 

- < k  

- RiCl 

I C *- 

-A I 
Figure 1. 

half-planes, an integral function is defined throughout the [-plane, with 
the following representation in the lower half-plane : 

I.F. = 2 / ( 5  - ik)Fl(c)  + 2ni j d(5 - ik)eZ"a F,(O 
1 + 

C -  5-5 

Here C- is a path of integration conducted in the strip 14{5}1 < g { k }  (see 
figure l), and 5 is located below the path. The terms in (57) tend to zero 
when 151 + 03 in the lower half-plane, as do the corresponding terms at 
infinity in the upper half-plane, and thus the integral function vanishes, 
yielding 

I d(t - ik)ezfca ~ , ( t )  AL + 1 
2/(t - ik)F,(s) + 

C- 5-5 
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Similar considerations applied to (56) give 

1 

where C, is another path conducted in the strip, this time below the point 5. 
The integrals on C-, C, are usefully recast by deforming the contours 

in the upper and lower half-planes, respectively, so as to run along the 
branch cuts drawn from 5 = f ik. If these cuts are placed on the imaginary 
axis away from the origin ( 4 ( k )  -+ 0), then, taking account of the phases 
of the radicals at each side of a cut, it follows that 

du 
Tr 

d(~-1 )  du 
1 u iku-l; 
m 

1 

+ 

(60) 
du 

ku 

i 
+ - 133’2 j d ( u  - I )  

&/4 
= - k1!2 

Tr 

ein/4 

Tr 

and 

+ 
Tr 

(61) 
Tr 

The integral equations (60), (61) are not independent, for reversal of the 
sign of 5 in (60), and the use of relation Fl(5) = P2(-5),  leads to (61). 
Let 5 = ikv in (61) ; then 

1 “d(u-11) du 
d ( v  + 1)F2(ikv) = - I + Trk 1 u u + a  

du 
ku l )  u + v  

1 m  

= 1  

kv + kv 

+ - j d ( u  - 1 )  ~ , ( i k u )  - - e-zkau- 

- 1 d ( V + 1 )  + - - -  

ku (62) 

which is an integral equation for the function F2(ikv). When a +. a, 
the integral drops out, and the resulting form of F2 agrees with that found 
in the semi-infinite strip configuration, namely (36). A more symmetrical 
version of the integral equation is obtained by defining 

1 
P(v) = ; -k F2(ikv), (63) 
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for then 
du 

u + v '  2/(v + l)P(v) = 2/(u- l)P(u)e-2--- 

From (62) it also follows that 

(65) 
du 

The relations (64), (65) provide a suitable basis for calculating the skin 
friction in the early stages of the motion, as will now be verified. 

4.  SKIN FRICTION 

T o  begin the skin friction calculation, an expression for i ( 0 )  is required. 
Using (54), (65), this is given by 

where P(u) satisfies the integral equation (64). An iterative procedure can 
be applied to the integral equation when W{k} > 0, and the leading terms 
of P(u) thus obtained are 

The  corresponding approximation for g(0,p)  is 

after reverting to the Laplace transform variable, 

'There remains only an evaluation of the inversion integral (28), 
p = uk2. 

and it will be noted that the conditions W { p }  > 0, W{k) > 0 are indeed 
compatible with (69). The resulting skin friction is 

2a + 1 - T 2 j," J( u + l  "-')erfc( .\/(Id) 5) F du - 

- 7 f 2 .  \: J( (u  ( ~ - l ) ( ~ - l ) )  + l)(v + 1) erfc (a(u+a))  - 2 / ( Y t )  uv(u+v) dudv ] ' (71) 

where 

N eaa/dTz 
is the complementary error function. 

for z B 1 
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When all/(&) 1, the principal contributions to the integrals arise 
from the neighbourhood of the lower limit, and thus the double integral 
is smaller than the single integral by a factor e-3aP/vt. This exponential 
decrease in magnitude evidently characterizes further contributions to the 
skin friction resulting from continued iteration of the integral equation. 
Successive terms acquire comparable magnitude when a/d(vt) < 1, and, 
in the limit a/l/(vt) + 0, the full iterated series is required to compensate 
the time independent term in D. The development (71) is therefore useful 
only for the early stages of the motion, as anticipated. 

The first term in (71) arises from a uniform, local skin friction character- 
istic of an infinite strip, and the next term takes account of the non-uniformity 
introduced by the strip edges, here computed additively when the latter are 
infinitely remote. T o  verify this interpretation, observe that the excess 
skin friction on the semi-infinite strip 0 < x < co , attributable to the edge, 
stems from the distribution (see (39)) 

whose integrated value over the range 0 < x < 00 is unity. The second 
term in (68), and hence (71), thus bespeaks two such contributions, from 
remote edges. If the distribution (73) is integrated over a strip 
0 < x < 2a, there is an additional contribution which is evidently distinct 
from the third .term of (68). The necessary refinement of g(x) entails a 
direct consideration of the finite strip configuration, and it is of interest 
to see how this may be carried out in the transform formulation. 

In  1x1 < a, by (24), 
1 m 2sin(a d( 

- zg(x) = & (& - k2) [ 
--m 5 d(k2+ P )  + 

F,(<) = - i{l-J(-ik)} 5-zk  - 

eiln2 J( - -"> lrn du 
-- d ( u  - l)P(u)e-U - = F2( - 5). (75). 

Tr 5 - i k  , zku- ( 

A modification of the integrals is expedient, and results from deforming 
the contour into the upper or lower part of the (-plane. Thus, for 1x1 < a, 

m 2sin(a d5 
eiSx - 

J - m  5 d ( k 2 + C 2 )  
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.and 

while the corresponding integral with F2(C) calls only for a reversal in the 
sign of x in the above expressions. Substituting these expressions in (74),  
we obtain 

. co e-k(a+x)u + e-k(u-z)u 
X 

2 d2 
g(x)=2~+- ( -  rrk dx2 - P ) [  1 1 d ( u + 1 )  

x (t + ; jm d ( v -  l)P(v)c2k""-- u + v  dv d ( U 2 - 1 )  du 1 1 

where the last form follows from a use of the integral equation for P(u). 
In  the second form, there may be recognized contributions of the type (73), 
referred to each strip edge. The singularities ofg(x) at x = i- a are contained 
in factors (a k x)-~ '~,  which are also characteristic of an isolated edge. The 
time varying function ~ ( x ,  t )  obtains after the inverse Laplace transform 
is applied to ( 7 Q  
the result is 

2 
g(x, t )  = ~ 

d(TVt)  

and; with the first approximation P(uj = l / u d ( u  + l), 

After integration of (78), one finds 

in contrast with (66). However, on substitution of the iterative expression 
for P(u), the same development is obtained with each of these representations ; 
it is noteworthy that (66) and (80 a) lead to the result (68) when P(u) is given 
by the two-term approximation (67), whereas a three-term approximation 
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is called for in (80 b). This feature reflects a difference in basis of the 
calculation according as the off-strip distribution f ( x )  for 1x1 > a, or the 
strip distribution g(x) for 1x1 < a, is involved. The semi-infinite distribu- 
tion is a natural first approximation for f ( x ) ,  and each successive stage of 
approximation generates a distinct order-of-magnitude correction in both 
f ( x )  and the skin friction D. On the other hand, only a finite part of the 
semi-infinite distribution for g(x) is relevant, and successive approximations 
are partially coupled in magnitude, resulting in like order contributions to D. 
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